15 resultados para AR-retinoic acid

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrate forelimbs arise as bilateral appendages from the lateral plate mesoderm (LPM). Mutants in aldh1a2 (raldh2), an embryonically expressed gene encoding a retinoic acid (RA)-synthesizing enzyme, have been used to show that limb development and patterning of the limb bud are crucially dependent on RA signaling. However, the timing and cellular origin of RA signaling in these processes have remained poorly resolved. We have used genetics and chemical modulators of RA signaling to resolve these issues in the zebrafish. By rescuing pectoral fin induction in the aldh1a2/neckless mutant with exogenous RA and by blocking RA signaling in wild-type embryos, we find that RA acts as a permissive signal that is required during the six- to eight-somite stages for pectoral fin induction. Cell-transplantation experiments show that RA production is not only crucially required from flanking somites, but is sufficient to permit fin bud initiation when the trunk mesoderm is genetically ablated. Under the latter condition, intermediate mesoderm alone cannot induce the pectoral fin field in the LPM. We further show that induction of the fin field is directly followed by a continued requirement for somite-derived RA signaling to establish a prepattern of anteroposterior fates in the condensing fin mesenchyme. This process is mediated by the maintained expression of the transcription factor hand2, through which the fin field is continuously posteriorized, and lasts up to several hours prior to limb-budding. Thus, RA signaling from flanking somites plays a dual early role in the condensing limb bud mesenchyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization. Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. Additionally, RA treatment increased expression of CCAAT/enhancer binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small variations in signalling pathways have been linked to phenotypic diversity and speciation. In vertebrates, teeth represent a reservoir of adaptive morphological structures that are prone to evolutionary change. Cyprinid fish display an impressive diversity in tooth number, but the signals that generate such diversity are unknown. Here, we show that retinoic acid (RA) availability influences tooth number size in Cyprinids. Heterozygous adult zebrafish heterozygous for the cyp26b1 mutant that encodes an enzyme able to degrade RA possess an extra tooth in the ventral row. Expression analysis of pharyngeal mesenchyme markers such as dlx2a and lhx6 shows lateral, anterior and dorsal expansion of these markers in RA-treated embryos, whereas the expression of the dental epithelium markers dlx2b and dlx3b is unchanged. Our analysis suggests that changes in RA signalling play an important role in the diversification of teeth in Cyprinids. Our work illustrates that through subtle changes in the expression of rate-limiting enzymes, the RA pathway is an active player of tooth evolution in fish.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that waste water treatment plant (WWTP) effluents are estrogenic. There has been much less consideration of the androgenic activity of WWTP effluents. To partly address the shortage of information on androgens in Australian WWTP effluents, in August 2006, and again in 2007, we collected discharges from up to 45 Victorian WWTPs (~25% of all WWTPs in Victoria), grouped by treatment process, i.e. activated sludge, extended aeration, and lagoon based treatment, and measured the total estrogenic, androgenic, retinoic acid, and aromatic hydrocarbon hydrogenase activity of the effluents using a hybrid yeast bioassay. This paper will concentrate on the androgenic activity and male hormone concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes an investigation of the effects of vitamin A deficiency on gut function, The central hypothesis to be tested was that acute vitamin A deficiency affects glucose uptake from the small intestine- The hypothesis was tested using a system involving perfusion of isolated segments of the small intestine in the anaesthetized rat. The system was used to study effects on glucose uptake under steady-state conditions. In the initial part of the study, experiments were diverted towards setting up the system for measuring steady-state uptake, and determining the relative contributions of active uptake and diffusion. Phenol red was found to be a reliable non-absorbable marker for determining net water movement. Phlorizin, generally at 1 mmol/L, was used as a competitive (reversible) inhibitor of active uptake. It is difficult however to confirm complete inhibition of active uptake by phlorizin because of the limited solubility of the inhibitor. The kinetics of glucose uptake f ram intra-luminal maltose were found to be, in general, not significantly different from those applying to the uptake of glucose from an equivalent glucose solution. Maltase activity in the perfused gut segment was found to be sufficient to hydrolyse most of the maltose (80 per cent or more) in the solution being perfused, a much greater proportion than was absorbed. Glucose absorptive capacity, measured on an intestinal dry weight basis, was greatest in the duodenum and progressively less in the jejunum and ileum. The rate of water uptake f ran the gut was increased by the presence of glucose in the lumen, and was linked to glucose uptake as shown by the inhibition of water uptake by phlorizin. Uptake of glucose by solvent drag was demonstrated by showing an increased rate of glucose uptake when the rate of water uptake was increased by perfusing a solution of reduced osmotic pressure. In the experiment a low intra-luminal glucose concentration was used to preclude net uptake by diffusion and active uptake was blocked with phlorizin. This process was further investigated using streptozotocin-diabetic rats in which the diabetes establishes a hyperosomotic blood with hyperglycaemia. Uptake by solvent drag was more obvious in diabetic animals. A back-diffusion (exsorption) of glucose from the tissues to the lumen was also shown; the rate being proportional to plasma glucose concentration. Vitamin A deficiency was established in weanling rats after 6-7 weeks feeding on a diet based on wheat starch, coconut oil, and casein washed with hot ethanol, together with vitamins and minerals. The vitamin A deficiency led to classic eye signs and was reversed by the addition to the diet of retinoic acid (5 g/g diet). Vitamin A deficiency decreased intestinal mucus production (dry weight) but had no detectable effect on the histology of the villous epithelium as shown under the light microscope. Using perfusion experiments it was shown that vitamin A deficiency had no significant effect on the rate of active uptake of glucose, but that deficiency increased the rate of passive uptake.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research focused on the neuro-proliferation and protective effects of a survivin mutant. The results showed that this protein binds to microtubules and induces the division and proliferation of neural cells. Furthermore, it protects the neural cells against retinoic acid induced neurotoxicity, activated T-cell apoptosis and oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The apical cytoplasm of airway epithelium (AE) contains abundant labile zinc (Zn) ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG)-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Food allergy has a dramatic impact on a child's (and their family's) quality of life and places a major financial burden on the community. It has been hypothesized that the increase in food allergy may relate to the concordant rise in prevalence of vitamin D insufficiency. More recently a second hypothesis has implicated vitamin A sufficiency in the development of immune tolerance. Together, these hypotheses have prompted investigation into the circulating levels of vitamins A and D in relation to food allergy prevalence. This review aims to examine the relationship between vitamins A and D and food allergy. The first part of this review presents the available epidemiological data which proposes a dramatic increase of food allergy and related anaphylaxis during the last two decades. There is some indirect evidence that variation in food allergy prevalence within countries might be linked with ambient ultra violet radiation exposure and thus potentially with vitamin D levels. Only a few studies to date have directly examined the relationship between measured serum vitamin D levels and either food sensitization or allergy. The significance of vitamin A in food allergy prevalence is only provided through a hypothetical association due to its role in the immune system. The second part of this review discusses the relevant aspects of the analytical methods to assess vitamin A and D levels in children. The primary methods utilized relate to measuring the main circulating forms of vitamins A and D in blood i.e. retinol and 25-hydroxy-vitamin-D3 respectively. Chromatographic separation coupled with mass spectrometric detection is considered the gold standard method for both vitamins. These analytical methods should be fully validated for the use in pediatric populations to ensure they are fit for their clinical purpose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 My research focussed on the analysing the lipid profile during development. I further studied potential chemicals to modulate lipid abundaces. Furthermore, I explored the effects of SSRIs on bone development.